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Abstract. The variation of flow-variables with distance, in the flow-field behind a shock wave propagating
in a dusty gas with exponentially varying density, are obtained at different times. The equilibrium flow
conditions are assumed to be maintained, and the results are compared with those obtained for a perfect
gas. It is found that the presence of small solid particles in the medium has significant effects on the
variation of density and pressure.

PACS. 47.40.-x Compressible flows; shock and detonation phenomena – 47.55.Kf Multiphase
and particle-laden flows

1 Introduction

The study of high speed flow of a mixture of gas and
small solid particles is of great interest in several branches
of engineering and science (Pai et al. [1]). The propaga-
tion of strong shock wave produced on account of sudden
explosion in a medium where the density varies as some
power of the distance from the point of explosion, has
been studied by Christer and Helliwell [2], Verma [3] and
many others. Hayes [4], Ray and Bhowmick [5], Verma and
Vishwakarma [6] have studied the propagation of plane
shock wave in a medium where density increases expo-
nentially.

In our study, we have generalized the solution of Ray
and Bhowmick [5] in gas to the case of two phase flow
of a mixture of gas and small solid particles in which the
density obeys the exponential law. In order to get some
essential features of shock propagation, small solid parti-
cles are considered as a pseudo-fluid, and it is assumed
that the equilibrium flow condition is maintained in the
flow field, and that the viscous stress and heat conduction
of the mixture are negligible [1]. Although the density of
the mixture is assumed to be increasing exponentially, the
volume occupied by the solid particles may be very small
under ordinary conditions owing to the large density of
the particle material. Hence for simplicity the initial vol-
ume fraction of solid particles Z1 is assumed to be a small
constant. Our solutions obtained are non-similar ones and
are valid for the time till Z1 remains small. Variation of
the flow variables with distance, behind the shock front,
at different times, are shown in Figures.

2 Fundamental equations and boundary
conditions

The fundamental equations for one dimensional and un-
steady flow of a mixture of gas and small solid particles

can be written as
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where i = 0, 1 or 2 correspond to plane, cylindrical or
spherical symmetry,
ρ is the density of mixture,
u the flow velocity,
p the pressure of mixture,
Um the internal energy per unit mass of the mixture,
r the distance, and
t the time.

The equation of state of the mixture of gas and small
solid particles can be written as (Pai et al. [1])

p =
(1− kp)
(1− Z)

ρ R∗T (2.4)

where R∗ is the gas constant, T the temperature, kp the
mass concentration of solid particles and Z the volume
fraction of solid particles in the mixture.

The relation between kp and Z is given by

kp =
Z ρsp
ρ

(2.5)

where ρsp is the species density of solid particles. In equi-
librium flow, kp is a constant in the whole flow field.

The internal energy of the mixture may be written as
follows

Um = kp Csp + (1− kp)Cv = Cvm T, (2.6)
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where Csp is the specific heat of solid particles, Cv the
specific heat of gas at constant volume, and Cvm the spe-
cific heat of the mixture at constant volume. The specific
heat at constant pressure process is

Cpm = kpCsp + (1− kp)Cp (2.7)

where Cp is the specific heat of the gas at constant pressure
process.

The ratio of the specific heats of the mixture is given
by (Marble [7], Pai et al. [1])

Γ =
Cpm
Cvm

= γ
(1 + δβ′/γ)

1 + δβ′
, (2.8)

where γ = Cp
Cv

, δ = kp
1−kp , and β′ = Csp

Cv
.

The internal energy is therefore, given by

Um =
p(1− Z)
ρ(Γ − 1)

· (2.9)

We consider that a strong shock wave is propagated into
a medium, at rest, with negligibly small counter pressure.
Also the initial density of the medium (the mixture of
a gas and small solid particles) is assumed to obey the
exponential law,

ρ = keαr, (2.10)

where α and k are positive constants.
The jump conditions across the shock wave are as

u2 = (1− β)U,

ρ2 =
ρ1

β
,

p2 = (1− β)ρ1U
2,

Z2 =
Z1

β
, (2.11)

where suffices “1” and “2” refer to the values just ahead
and just behind of the shock, U = dR

dt is the shock velocity,
and R the distance of the shock front from the plane, the
line or the point of symmetry. Also the quantity “β” is
given by

β =
Γ + 2Z1 − 1

Γ + 1
· (2.12)

The initial volume fraction of the solid particles Z1 is,
in general not a constant. But the volume occupied by the
solid particles is very small because the density of the solid
particles is much larger than that of the gas (Miura and
Glass [8]), hence Z1 may be assumed as a small constant.
The expression for Z1 is (Naidu et al. [9])

Z1 =
kp

G(1− kp) + kp
(2.13)

where G = ρsp
ρg

the ratio of the density of solid particles
to the density of gas. Values of Z1 for some typical values
of kp and G are given in Table 1.

Table 1. Values of Z1 for some typical values of kp and G.

kp G Z1

50 0.00222

0.1 100 0.00111

200 0.00056

50 0.00498

0.2 100 0.00249

200 0.00125

50 0.01316

0.4 100 0.00662

200 0.00332

Let the solution of equations (2.1), (2.2) and (2.3) be
of the form,

u = t−1V (η),

ρ = tΩD(η),

p = tΩ−1H(η), (2.14)

where

η = teλx , λ 6= 0 (2.15)

and the constants Ω and λ are to be determined subse-
quently. We choose the shock surface to be given by

η0 = const. (2.16)

so that its velocity is given by

U = − 1
λt
· (2.17)

Hence it is obvious that λ < 0. The solutions of the
equations (2.1) to (2.3) in the form of (2.14) are compat-
ible with the shock conditions only if,

Ω = 2 and λ = −α
2
, (2.18)

The effective shock Mach number Me is given by

M2
e =

U2

a2
1

=
U2

[p1/ρ1(1− Z1)]
=

4(1− Z1)k
Γp1α2η2

0

= const.

Since Me comes out to be a constant and p1 can be
taken to be of order zero for a very strong shock, we con-
clude that the shock retains its great strength even for
a large time. Hence our solutions obtained in the next
section are applicable for any time t > τ till Z1 remains
small, τ being the duration of initial impulse.

Also, from equation (2.17) and (2.18), we obtain

R =
2
α

log
t

τ
· (2.19)
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3 Solution of the equations

The flow variables inside the shock wave are obtained by
solving the equations (2.1), (2.2) and (2.3). From equa-
tions (2.14), (2.17) and (2.18), we obtain
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Using equations (3.1-3.3) and the transformations
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in the fundamental equations (2.1-2.3), we obtain
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From above equations, we have
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Also, the total energy of the flow field behind the shock
front is given by

E = σi
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0
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1
2
u2)ridr, (3.11)

where σi = 2πi+(i−1)(i−2), using (3.4), (3.11) becomes
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Fig. 1. Variation of reduced flow velocity u′ in the region
behind the shock front.

Hence the total energy of the shock wave is non-
constant and varies as Ri+1, where i = 0, 1 or 2 for plane,
cylindrical or spherical shock.

In terms of dimensionless variables r′, p′, ρ′ and u′

the shock conditions take the form

r′ = 1 , p′ = 1 , ρ′ = 1 , u′ = 1− β · (3.12)

Equations (3.8) to (3.10) along with the boundary con-
ditions (3.12) give the solution of our problem. The solu-
tion thus obtained is a non-similar one, since the motion
behind the shock can be determined only when a definite
value for time is prescribed.

4 Results and discussion

To obtain the solutions, we start numerical integration of
the equations (3.8) to (3.10) from the shock front (r′ = 1)
and proceed inwards. Distributions of flow variables u′ =
u
U , p

′ = p
p2
, ρ′ = ρ

ρ2
are obtained for spherical shock

(i = 2) at given instants for which t/τ = 2 or 4. Values of
γ, kp′ G and β′ are taken as γ = 1.4, kp = 0.1, 0.4, G =
100 (see Pai et al. [1]), β′ = 1 (see Miura and Glass [8])
and the solutions are shown in Figures 1 to 3.

Figure 1 shows that in the initial stages of motion
(t/τ = 2), the velocity u′ increases from shock front to
the inner contact surface, but at latter stages (t/τ = 4)
it decreases after attaining a maximum. Also, it is shown
that for small values of kp, the values of u′ tend to be
those for the corresponding perfect gas as indicated in the
work of Pai et al. [1].
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Fig. 2. Variation of reduced pressure p′ in the region behind
the shock front.

Figure 2 shows that the pressure p′ decreases as we
move inwards from the shock front. This decrease of pres-
sure is faster for dusty gas in comparison to that for the
corresponding perfect gas.

Figure 3 shows that the density ρ′ increases as we
move from shock front to the inner contact surface which
is in contrast with the case of perfect gas (Verma and
Singh [10], Ray and Bhowmick [5]), where it decreases.
This phenomenological behaviour of the density is at-
tributed to the presence of solid particles in the dusty
gas. Actually, in the case of a strong shock in a perfect
gas, the most of the mass is concentrated near the shock
front, and follows it. On the other hand, in the case of a
dusty gas the shock speed is reduced relative to the inner
contact surface (as indicated in the next paragraph), and
the medium has the tendency to stagnate due to load of
solid particles. Therefore the region behind the shock front
is driven by the inner contact surface causing the increase
of density in its neighbourhood.

Figures 1-3 show that the effects of an increase in the
mass concentration of solid particles kp are:

(i) to increase the velocity u′,
(ii) to increase the slopes of the pressure and density pro-

files in the region behind the shock front, and

Fig. 3. Variation of reduced density ρ′ in the region behind
the shock front.

(iii) to decrease the distance between the inner contact
surface and the shock front. This results due to the
fact that the shock speed is reduced when shock
moves in a dusty gas (when compared with perfect
gas) or in a dusty gas with comparatively higher kp.
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